
Practical algorithms∗: Computing βN

Cheng Guan Koay†

April 19, 2008

In this note, we will present a simple algorithm for computing βN , which was used in [1].
Briefly, βN is given by:

βN =
√

π/2
(2N − 1)!!

2N−1(N − 1)!
, (1)

where N is a positive integer, the double factorial of N is given by N !! = N × (N − 2) · · ·
with 0!! ≡ 1 while the factorial of N is given by N ! = N × (N − 1) · · · 2× 1 with 0! ≡ 1.

The expression in Eq.(1) is elegant and compact but it is not practical for numerical
computation in a finite precision system that does not have special routines or packages such
as BigDecimal and BigIntegers in JavaTM[2] because it is expressed as a ratio of two big
numbers—the factorials. For example, (2N − 1)!! for N = 64 is 1.647× 10107.

Fortunately, this expression can be further simplified to 1

βN =

√
π

2

N∏

k=2

k − 1/2

k − 1
. (2)

The derivation of the above expression is shown in the appendix. Note that the formula in
Eq.(2) is now expressed as a product of many small ratios. For completeness, the Java code
for computing βN is shown below:

public static double beta(int N){

double p = 1.0;

for(int i=2; i<=N; i++){

p *= ((i-0.5)/(i-1.0));

}

return Math.sqrt(0.5*Math.PI)*p;

}

∗The main reason for writing up these notes is that I often have to spend some time rediscovering what I
have found long ago about certain not-so-obvious (nontrivial) techniques for computing certain quantities if
I do not have a record of how these techniques were invented or devised. Frankly, these notes are very helpful
to me so that I can remind myself the main reasoning behind the techniques. As R.W. Hamming once put
it, “The purpose of computing is insight, not numbers”, my goal here is to present practical algorithms that
I have designed and used in my research work in an intelligible manner so that interested readers may be
able understand and use them in their own work. Of course, comments from readers are welcome.

†Contact info: guankoac@mail.nih.gov
1The expression in Eq.(2) can also expressed in term of Gamma function. That is, βN =

√
2Γ(n +

1/2)/Γ(n). Again, this formula is still expressed as a ratio of two large number.

1



Appendix

βN =

√
π

2

(2N − 1)!!

2N−1(N − 1)!
(3)

=

√
π

2

(2N − 1)× (2N − 3)× (2N − 5)× · · · × 3× 1

2N−1(N − 1)× (N − 2)× (N − 3)× · · · × 2× 1
(4)

=

√
π

2

(2N − 1)/2× (2N − 3)/2× (2N − 5)/2× · · · × 3/2× 1

(N − 1)× (N − 2)× · · · × (2)× (1)
(5)

=

√
π

2

(2(N)− 1)/2× (2(N − 1)− 1)/2× (2(N − 2)− 1)/2 · · ·
(N − 1)× (N − 2)× (N − 3) · · · × (2)× (1)

(6)

=

√
π

2

((N)− 1/2)× ((N − 1)− 1/2)× ((N − 2)− 1/2) · · ·
((N)− 1)× ((N − 1)− 1)× ((N − 2)− 1)× · · · (7)

=

√
π

2

(N − 1/2)

(N − 1)
× ((N − 1)− 1/2)

((N − 1)− 1)
× ((N − 2)− 1/2)

((N − 2)− 1)
× . . . (8)

=

√
π

2

N∏

k=2

k − 1/2

k − 1
. (9)

Note that there are N−1 factors in (2N−1)!!, not counting the factor 1, and that every factor
is an odd number for any positive integer N . By dividing each factor by 2 in a descending
order starting from the largest factor, we arrive at Eq.(5) with 3/2 being the last factor after
the division, again not counting the factor 1. This is the main reason why k in Eq.(9) starts
at 2.

References

[1] Koay, C.G. and Basser, P.J. Analytically exact correction scheme for signal extraction
from noisy magnitude MR signals. J. Magn. Reson. 179, 317-322 (2006).

[2] Arnold, K., Gosling, J. and Holmes, D. The JavaTMprogramming language. 4th Ed. Pren-
tice Hall; New York: 2005.

2


